ΘΕΜΑ:
ΚΑΤΑΣΚΕΥΗ ΛΟΓΙΣΜΙΚΟΥ ΠΑΡΑΜΕΤΡΟΠΟΙΗΣΗΣ ΚΑΙ ΕΠΙΛΥΣΗΣ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΔΙΚΤΥΟΥ ΥΔΡΕΥΣΗΣ

ΣΠΟΥΔΑΣΤΡΙΑ: ΚΟΤΟΠΟΥΛΟΥ ΘΕΟΦΑΝΕΙΑ
ΕΠΙΒΛΕΠΟΝ ΚΑΘΗΓΗΤΗΣ: ΔΡ ΚΟΚΚΙΝΟΣ ΙΩΑΝΝΗΣ

ΣΕΡΡΕΣ ΜΑΪΟΣ 2007
ΠΕΡΙΕΧΟΜΕΝΑ

ΚΕΦΑΛΑΙΟ 1. ΕΙΣΑΓΩΓΗ
1.1. ΠΡΟΛΟΓΟΣ ... σ.5
1.2. ΙΣΤΟΡΙΚΗ ΑΝΑΛΟΓΙΑ .. σ.7
1.3. ΜΕΛΕΤΗ ΥΔΡΕΥΣΗΣ ... σ.10
1.4. ΕΞΕΡΕΥΝΗ ΔΙΚΤΥΟ ΥΔΡΕΥΣΗΣ σ.12
1.5. VISUAL BASIC 6.0 .. σ.14

ΚΕΦΑΛΑΙΟ 2. ΠΡΟΒΛΕΨΗ ΠΛΗΘΥΣΜΟΥ
2.1. ΦΥΣΙΚΟ ΠΡΟΒΛΗΜΑ .. σ.16
2.1.6. Μέθοδος αναλογισμόν ... σ.19
2.1.6.6. Γεωμετρική Μέθοδος .. σ.20
2.1.6. Περίπτωση περίπου πληθυσμός σ.20
2.1.6. Μέθοδος με μειωμένο ρυθμό αύξησης σ.22
2.2 ΕΚΤΕΛΕΣΗ ΓΕΩΥΡΓΙΚΟΥ .. σ.23
2.3 ΕΠΕΙΘΗΣΗ ΚΩΔΙΚΑ ... σ.26

ΚΕΦΑΛΑΙΟ 3. ΧΩΡΙΣΜΟΣ ΖΩΝΩΝ-ΘΕΣΕΙΣ ΔΕΣΔΕΜΕΝΩΝ
3.1 ΦΥΣΙΚΟ ΠΡΟΒΛΗΜΑ .. σ.31
3.2 ΕΚΤΕΛΕΣΗ ΓΕΩΥΡΓΙΚΟΥ .. σ.33
3.3 ΕΠΕΙΘΗΣΗ ΚΩΔΙΚΑ ... σ.34

ΚΕΦΑΛΑΙΟ 4. ΚΛΑΘΟΡΙΣΜΟΣ ΧΡΗΣΕΩΝ ΝΕΡΟΥ
4.1 ΦΥΣΙΚΟ ΠΡΟΒΛΗΜΑ .. σ.37
4.1.6 Ημιπολική χρήση ... σ.38
4.1.6.7 Δημόσια χρήση ... σ.38
4.1.6. Βιομηχανική χρήση ... σ.39
4.1.6. Τουριστική χρήση .. σ.40
4.1.6. Αγροτική χρήση ... σ.40
4.1.6 Απόδειξες ... σ.41
4.2 ΕΚΤΕΛΕΣΗ ΓΕΩΥΡΓΙΚΟΥ .. σ.42
4.3 ΕΠΕΙΘΗΣΗ ΚΩΔΙΚΑ ... σ.47

Κοστοπόλου Θεοφανίδα
ΚΕΦΑΛΑΙΟ 5. ΔΙΑΚΥΜΑΝΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ
5.1. ΦΥΣΙΚΟ ΠΡΟΒΛΗΜΑ ...πλήκτρο 54
5.2. ΕΚΤΕΛΕΣΗ ΛΕΙΤΟΥΡΓΙΚΟΥ ...πλήκτρο 56
5.3. ΕΠΕΞΕΥΘΕΝ ΚΩΔΙΚΑ ...πλήκτρο 57

ΚΕΦΑΛΑΙΟ 6. ΚΑΘΟΡΙΣΜΟΣ ΕΚΤΑΚΤΩΝ ΛΕΙΤΟΥΡΓΙΩΝ
6.1. ΦΥΣΙΚΟ ΠΡΟΒΛΗΜΑ
6.1.α. Πηγαδια ...πλήκτρο 58
6.1.β. Αρσενικά υδραυλικά ..πλήκτρο 59
6.2. ΕΚΤΕΛΕΣΗ ΛΕΙΤΟΥΡΓΙΚΟΥ ...πλήκτρο 60
6.3. ΕΠΕΞΕΥΘΕΝ ΚΩΔΙΚΑ ...πλήκτρο 62

ΚΕΦΑΛΑΙΟ 7. ΔΕΣΔΑΜΕΝΕΣ ΑΠΟΘΗΚΕΥΣΗΣ
7.1. ΦΥΣΙΚΟ ΠΡΟΒΛΗΜΑ ...πλήκτρο 64
7.1.α. Υπολογισμός Πηγαδιών υδραυλικώνπλήκτρο 66
7.1.β. Κατασκευή δεξαμενών ...πλήκτρο 69
7.1.γ. Διαταξινομητής δεξαμενών ..πλήκτρο 70
7.2. ΕΚΤΕΛΕΣΗ ΛΕΙΤΟΥΡΓΙΚΟΥ ...πλήκτρο 71
7.3. ΕΠΕΞΕΥΘΕΝ ΚΩΔΙΚΑ ...πλήκτρο 76

11. ΚΕΦΑΛΑΙΟ 8. ΑΓΩΓΟΙ ΜΕΤΑΦΟΡΑΣ
8.1 ΓΕΝΙΚΑ ΠΑ ΤΟΥΣ ΑΓΩΓΟΥΣ ...πλήκτρο 84
8.2 ΜΑΣΤΑΣΙΟΛΟΓΗΣΗ ΑΓΩΓΟΥ ΒΑΡΥΤΤΟΤΗΤΑΣπλήκτρο 92
8.3 ΕΚΤΕΛΕΣΗ ΛΕΙΤΟΥΡΓΙΚΟΥ ...πλήκτρο 94
8.4 ΕΠΕΞΕΥΘΕΝ ΚΩΔΙΚΑ ...πλήκτρο 97
8.5 ΜΑΣΤΑΣΙΟΛΟΓΗΣΗ ΚΑΤΑΘΛΙΠΤΙΚΟΥ ΑΓΩΓΟΥπλήκτρο 104
8.6 ΕΚΤΕΛΕΣΗ ΛΕΙΤΟΥΡΓΙΚΟΥ ...πλήκτρο 119
ΚΕΦΑΛΑΙΟ 1
ΕΙΣΑΓΩΓΗ
1.1 ΠΡΟΛΟΓΟΣ

Η «Υπολογιστή» αποτελεί έκθεση του επιστημονικού κλάδου που ασχολείται με τις πρακτικές εφαρμογές των κινούμενων ρευστών, κυρίως των υγρών. Στα υδραυλικά έργα συμμετέχουν εργασίες υδραυλικών, αρχιτεκτόνων, στοιχειωτικών κ.α. Γενικότερα στις υδραυλικές μελέτες παρουσιάζονται προβλήματα κατά τη διαχείριση ή χέρων των πρακτικών τους που απαιτούν πολύπλοκους και χρονοβόρους υπολογισμούς.

Με βάση το παραπάνω προβλήμα, συνειδητοποίησε η ιδέα για την εκπόνηση μιας περιγραφής εργασίας με θέμα την υπολογιστική λογισμικού παρεμπολιστικής και επίλυσης της εξωτερικού δικτύου υδρομεταφοράς σε περιβάλλον Visual Basic.

Το λογισμικό αυτό αποτελείται σε οποιοδήποτε έχει κλήση να προγραμματίζει μελέτη για την υλοποίηση κάποιων περιοχών και έχει την ανάγκη για αυτοματοποίηση των διαδικασιών και των διαδικασιών υπολογισμού του εξωτερικού δικτύου υδρομεταφοράς.

Τα πλεονεκτήματα ενός τέτοιου λογισμικού είναι:

- Μεγάλη ταχύτητα
- Ακρίβεια υπολογισμών
- Ορθότητα υπολογισμών
- Ευελιξία στο μέρος τον προγράμματος
- Ανυπολόγιστης αποθήκευσης και επαναλαμβάνοντας δεδομένων
- Προστασίες συνεχών αναβάθμισης
- Αισθητικό αποτέλεσμα

Το παρόν λογισμικό με την αναμονή Hydrox V1.00, αναπτύχθηκε με το πλαίσιο εφαρμογής Visual Studio και συγκεκριμένα με τη γλώσσα προγραμματισμού Visual Basic 6.0. Το παραγόμενο αποτέλεσμα είναι ένα εκτελέσιμο αρχείο (Hydrox V1.00.exe) με χωρητικότητα μέχρι 8,19 MBytes το οποίο είναι συμβατό σε όλες τις εκδόσεις των λειτουργικών συστημάτων Windows (98, Me, 2000, Χρ.). Για την αποθήκευση των δεδομένων του προγράμματος το Hydro-ex V1.00 χρησιμοποιεί το σύστημα διαχείρισης βασιών δεδομένων Microsoft Access του πακέτου Microsoft Office και συγκεκριμένα την έκδοση Access 2002.
Το Hydroex V1.00 προσφέρει μια αναλυτική λύση του εξωτερικού δικτύου οδηγώνης ώστε να αυτονομοποιήσει τις παρακάτω διαδικασίες:

- Πρόβλεψη πτώσης με τέσσερις μεθόδους
- Χωρικό χάρτης περιοχής και προσδιορισμός θέσεων δεξιομετριών
- Υπολογισμοί αποκλεισμών ανά ζώνη:
 - Υπολογισμός χρήσεων νερού
 - Διακύμανση της κατανάλωσης ανά ημέρα και ώρα
 - Υπολογισμός απαιτήσεων νερού σε περιοχές έκτασης αναγκών (π.χ. χωριατικοί σωμείοι).
- Εύρεση άγκου δεξιομετριών και διασταυρολόγηση αυτών
- Προστασία συστημάτων κατανάλωσης αναγκών

Ιδιαίτερη σημασία και προσοχή κατά την εκτέλεση του λογισμικού δόθηκε στο χέρι για φυλοκόπηση προς την χρήση και κατά παραπέταση δυνατότητας εκτός από την αυτονομία αριθμών επίκαιρης εσωτερικής εκκένωσης των παραμέτρων του προβλήματος.

Το Hydroex V1.00 αποτελεί μια πρώτη προσπάθεια προσομόνησης ενός προβλήματος σε επίπεδα προγραμματισμού που οφείλεται συμβατική εγκατάσταση ή επέκταση. Ωστόσο, ιδίως μπορεί να αποτελέσει ένα χρήσιμο εργαλείο με αυξημένη προσομοίωση σε σχέση με τη θεωρητική μέθοδο επίλυσης.